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Abstract

This project explored the feasibiliti of applying

finite element solution techniques in structural analysis on

a microcomputer. The problem was explored with respect to

the type of programming formats that can be used in finite

element programs. Three formats were explored. These were

the sequential, overlays, and modular format.

The results of the research indicated the maximum

problem size capabilities on the Cromemco System III

computer system, a 64K microcomputer. The effects of

bandwidth on total problem size were noted. In addition the

skill level required of an individual using a microcomputer

system was addressed.

Microcomputers have the capability to work in the finite

element field. By careful structuring of the problem, and

analyzing what the capabilities of the microcomputer are,

maximum utilization of the system can be obtained.
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THE APPLICATION OF

FINITE ELEMENT SOLUTION TECHNIQUES

IN STRUCTURAL ANALYSIS

ON A MICROCOMPUTER

1. Introduction

Objective

The purpose of this research was to demonstrate the

feasibility of using a microcomputer system for structural

analysis involving finite element solution techniques.

Background

In the past decade, giant strides were made in

computer technology. An entire new class of computer, the

microcomputer, has emerged. The microcomputer is the

smallest in the computer line, excluding the hand

calculators. The memory of this class of computer ranges

from 2 K to 100 K-bytes, that is, 2000 to 100,000 bytes of

memory space. This is in comparison to the 1.5 million

bytes of memory that a minicomputer has, and the several

million bytes that the main frame computers have. In

addition to the obvious difference in size, the other major

feature of the microcomputer is that it is a single user

computer. The entire computer is usually dedicated to a

single job. The larger computer systems are multi-user



systems where several individuals and programs use the

resources of the computer at the same time.

At the present time, use of the microcomputer is

generally limited to a secretarial role. It is used for

data processing, storage, and retrival. The computational

abilities of the computer are applied only to very

simplistic programs, much like a super calculator. This

limited usage of a relatively powerful instrument ignores

the tremendous potential of the microcomputer.

The computational abilities of a 64K microcomputer

equal that of many early main frame computers. The

microcomputer has the ability to handle many types of

problems which require the solution of a series of

simultaneous equations. The solution techniques normally

use a matrix format in the solution. These types of

problems come up in aerodynamics, civil engineering,

structural engineering, and other related fields. Applying

the problem solving abilities of the microcomputer to these

fields is a distinct possibility being almost totally

ignored.

At the present time, microcomputers are located in

almost every laboratory and educational environment. For

example, at the Air Force Institute of Technology, there are

approximately 20 microcomputers in use. The application of

numerical solution techniques, and in particular finite

element techniques, can greatly expand the capabilities of

these systems.

Over the past 15 years there have been many finite

2

o , • .



element programs developed, using various programming

techniques. These programs include SPAR, NASTRAN, STAP1V

and its derivitives, and GIFTS. These programs are general

purpose programs, designed to solve a variety of problems in

structural analysis, using a wide variety of elements. The

problems that can be solved include static analysis,

frequency response, and buckling. The programming

techniques used in these and other programs included

sequential programming, overlay programming, and

modularization.

This study explored the ability of a specific

microcomputer, the Cromemco System III, to handle structural

analysis problems using finite element solution techniques.

This study examined the techniques used in building the

finite element program. Because of the microcomputer's

limited memory capacity, programming efficiency is required

for maximum problem solving capacity. The efficiency of a

specific program is highly dependent on the format that the

program is written in. These programming formats or

techniques were evaluated from the aspect of how well the

microcomputer could handle the program, as well as how

efficient the programming was in relation to microcomputer

application.

There are a variety of programming techniques in use

today. The types of programming considered in this study

can be referred to as sequential programming, overlay

programming and modularization. Sequential programming is

the basic programming technique taught. Simply put, it

3



requires the entire program to be stored in core until

program execution is completed. The overlay technique is a

method of limiting the required core dedicated to program by

breaking the program into blocks, and having these blocks of

program in core only when needed. The modular format

involves a series of independent programs operating in a

pre-determined sequence. Only a single program lives in

core at any given time.

In addition to the applicability of finite element

analysis to the microcomputer, the skill level of the user

was examined. This skill level included both programming

skills and system operation skill. Unlike most minicomputer

and main frame systems, the individual who uses the

microcomputer is usually the system operator as well. There

are no technicians to handle the hardware operation of the

system. If the system has hardware failures, the user must

handle any maintainence necessary. The basic question here

was can an engineer with computer skills handle the system,

or does it require a computer programmer with engineering

skills.

4
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II. Sequential programming

Concept

The most common programming technique in use is

sequential programming. This is the simplest of the

programming techniques. Sequential programming is taught in

basic computer programming courses. Simply stated,

sequential programming requires all of the program and all

of the data to exist in memory at the same time. There are

no provisions to reduce the required size of memory by

limiting the amount of data existing in core at any given

time, except by limiting the size of the problem.

There are advantages to sequential programming. First

is that sequential programming is the simplest way to

program. Successfull programs are constructed by placing all

required subroutines in core at once. Because all the data

and equation solvers live in core memory at the same time,

the data storage and retrival systems are much easier to

construct. Because sequential programing is taught in most

basic programming courses, this format is the most most

familiar method of programming. There is a large amount of

written material available to aid the individual when

problems arise. Finally, there is the fact that most

computer operating systems are designed to accept sequential

programming formats. This is the case for the Cromemco

microcomputer, and as a result, a sequential progrem is the

easiest to implement on the system.

5



Even though sequential programming has many advantages,

it also has a significant disadvantage. This disadvantage

relates primarily to the application of the program to a

microcomputer. The biggest problem is that sequential

programming takes a great deal of memory to implement.

This is a serious problem because the most severe drawback

of the microcomputer is its lack of core memory space. This

type of programming makes it difficult to use the

microcomputer system's greatest asset, a large external

storage capacity. The Cromemco system has over 4.8 megabytes

of external disk storage. With sequential programming, this

disc storage is not utilized to any great degree. It is

this disadvantage that limits the use of the microcomputer

in relation to finite element application..

Implementation

In order to determine the ability of micro-computers to

handle sequentially programmed finite element codes, this

type of program was implemented on the computer. The two

choices were to create a sequential finite element code, or

modify an existing code to fit the Cromemco system. The

choice was made to modify an existing finite element code.

Since the basic goal was to determine if finite element

solution techniques were viable on microcomputers, the use

of a working program insured that any initial problems would

be problems stemming from the microcomputer, not the

program. In addition this code would form the basis for

expansion into a general purpose code, if the microcomputer

6



could handle it.

There were several requirements that the example code

had to meet in order to be useful in meeting the goals of

evaluating finite element progrms and microcomputers. The

first was that it had to be written in FORTRAN. This is the

standard engineering language, and in addition, a FORTRAN

compiler was the only compiler purchased with the Cromemco

system. The second requirement was that the program had to

be in the public domain. The program should also be

designed as a simple analysis code. A general purpose

program would not be suitable for the starting point.

Finally, in order to be useful, the initial program had to

have enough documention to allow implementation on the

microcomputer.

Several programs were considered. As mentioned

earlier, the most famous codes were the general purpose

codes. These codes were not suitable for the initial

program choice. They were obviously too large and complex

to fit on the microcomputer system. Several texts

((l),(2),(3)) had programs written for specific elements.

The initial program was chosen from these sources. The code

selected is called STAP.(3) It is a derivitive of the

general purpose program SAP(4), written by Dr. E.L. Wilson

of the University of California. STAP satisfied all the

requirements and had two additional advantages. The first

was that it was based on a much larger program. This makes

for an easier expansion into a general purpose program, if

needed. The second was Lnat it was written with some

7



attention paid to core memory restrictions.

Instead of using full matrix storage, the program uses

a modified banded storage scheme, skyline storage (3). It

also utilized scratch files on disk storage to store some of

the element information. These two features limited the

amount of core memory space dedicated to program storage,

with a resulting increase in memory for data storage and

solution.

Installing a program on a new system presents two

types of difficulties. The first is to insure that the code

is properly sized for the system in question. The second is

in the creation of additional subroutines. The details of

the sizing of STAP code are given in Chapter 5. The sub-

routines created for the STAP code were for operating system

utility changes and user convience. For example, in order

to use the timing provisions of the STAP code, the called

subroutines had to be consistent with the timing

capabilities of the computer. Also, the manual data input

was changed to use a mesh generator for rapid changes in

input data. These additions allowed the code to be quickly

and more easily analyzed.

Evaluation

There were two basic questions which had to be answered

concerning the microcomputer in relation to a sequentially

programmed finite element program. The first was how big of

a problem could the microcomputer solve. Obviously, if the

largest problem that the system can handle is on the same

8



level that can be solved by hand, then the microcomputer

would not be very useful. Conversely, if maximum problem

size was on the order of 100-200 degrees of freedom, then

microcomputer usage would be of some value.

The second question dealt with how fast can the

microcomputer solve the problem, and how accurate is that

solution. A primary advantage of the miocrocomputer is its

convienience. In order to be used instead of a central site

machine, the engineer must be able to make several runs

during the time that the central site will have only a

single run. If microcomputer turn around times are on the

same order as the central site, then usefullness of the

microcomputer is limited.

The first series of problems consisted of a simple

truss structure, which was expanded horizontally to increase

the number of degrees of freedom. This technique created a

constant bandwidth for the problem series. This type

Figure 2.1
Simple Truss Structure
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Screen Display

INPUT K FORM SOLVE TOTAL
NODES DOF TIME TIME TIME TIME

118 218 146 36 87 268
100 186 126 31 75 231
80 148 103 25 60 188
60 108 81 18 45 144
40 70 58 12 28 99
20 32 36 7 14 57

Disk Storage

INPUT K FORM SOLVE TOTAL
NODES DOF TIME TIME TIME TIME

118 218 210 36 93 339
100 186 188 31 81 300
80 148 154 25 65 244
60 108 117 18 51 180
40 70 82 12 34 129
20 32 51 7 15 73

Print Display

INPUT K FORM SOLVE TOTAL
NODES DOF TIME TIME TIME TIME

118 218 277 36 101 414
100 186 245 31 89 365
60 108 155 18 57 230
20 32 67 7 16 90

*Time in seconds

Table 2.1
Timing Data-Simple Truss,Constant Bandwidth
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problem would model a simple bridge. The structure was

supported at both ends and at various points along the base

of the structure. The loads were placed vertically along

the top of the structure. The diagonals were considered as

independent elements, with no node points at the

intersection. The problem was also limited to the two

dimensional case. The truss element allows translation in

three directions. The total number degrees of freedom in the

the two dimensional case is twice the number of node points

minus the supports where no translation is allowed.

With the constant bandwidth of 6, the microcomputer was

able to handle a structure with 286 elements and 218 degrees

of freedom. Using disk storage for the solution, total

solution time was in the five minute range, with I/O

accounting for 55% and floating point computations in the

soluton and K matrix formulation 45%. (Table 2.1)

Using different means of solution storage or

presentation produces different through put times. This was

strictly as a function of the I/O operations. The time

required for a write to disk is much different than for a

write to screen or printer. Table 2.1 presents all the data.

The fastest of the methods was a screen display. This is

reasonable due to the fact that there is the least amount of

input/output time involved in a screen presentation. This

took only 4.5 minutes for a problem of 218 degrees of

freedom. The slowest time was for a printed copy of the

results. This took 7.5 minutes, due to the speed

limitations of the printer. The disk storage took 5.7

. .. .. . . .-- A



minutes for total solution time.

These times indicate that the most adantageous system

would be to displsy the results on the screen. This gives

the fastest solution time. The drawback is that there is no

permament copy of the results. In order to produce the hard

copy, the longer times associated with printer display or

disk storage would have to be tolerated. Even using the

longest time figure, 7.5 minutes, the time factor is not a

driving factor. Assuming that 218 degrees of freedom is a

workable problem size, the concerns about excessive time for

solution are unfounded.

The problem was then altered to create a system with a

larger bandwidth. Most real problems are not of the format

of simple truss bridges. They have larger bandwidths when

the stiffness matrices are generated. Because bandwidth

determines array storage within the program, the larger

bandwidth increases program core requirements, and reduces

the number of degrees of freedom that can be handled by the

program. By increasing the maximum bandwidth from 6 to 15,

the total degrees of freedom dropped from 218 to 204. This

is not a disastrous reduction in problem size, but it does

demonstrate that care must be taken when node patterns are

created. Band widths should be made as small as possible

for maximum efficiency.

These results indicated that the microcomputer could

handle finite element problems of some magnitude. The next

step was to expand computer capabilities within the

sequential programming format. Using a bandwidth of 6 for

12



the STAP code, each additional K-byte of core memeory

allocated to data means an increase in solvable size by 7

degrees of freedom.

To increase the amount of user accessible memory, an

attempt was made to use system dedicated core. The only

possibility was that part of core memory allocated to the

system software for linking the program at link time. Once

linking has been accomplished, this space is not needed by

the operating system. Figure 2.2 is a general

representation of the memory of the microcomputer. The

normal software package loads the data on the bottom of the

RUNTIME LINKTIME

IOS DOS
DOS DOS

50K 50K
STACK LINK

DISC BUFFERS LINK DATA

46K 46K
COMMON COMMON

USER USER
PROGRAM PROGRAM

USER USER
DATA DATA

100 100
CDOS CDOS
DATA DATA

Figure 2.2
Memory Map
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memory, followed by the program on top of the memory. The

memory between PROGRAM and LINK DATA is memory available to

the user. By using the LINK DATA memory during execution,

user available memory is increased. This space is in the

range of 2-4 K-bytes.

In order to obtain this memory, two ideas were used.

The first is part of the FORTRAN language. FORTRAN does not

moniter array indices at runtime. It is possible to put more

elements into an array than the declared length of the

array. The second was the ability to load the program in a

reverse order, program first, followed by data. Figure 2.3

IOS

DOS

CONPROC

COMMON IA

USER
DATA

USER
PROGRAM

CDOS

Figure 2.3
Modified Memory Map
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shows the memory map for this format at runtime. The STAP

code utilizes the blank commom IA as the main storage

loaction. By having blank common as the last item loaded,

this array could be loaded up into the base of the CONPROC

area. The 2-4 K-bytes of memory in question represent 15-20

degrees of freedom.

Unfortunately, this attempt was not successful. The

failure lay in the fact that the run-time package was not

open to observation. There were input/output buffers that

always lived above the last item stored in common. Finding

the location of these buffers and their format required more

computer skills than were available. It would take a

computer programmer, not a structural engineer, to determine

these facts. Given the facts, the problem could be solved.

The next step was to expand the sequentially formatted

program into a general purpose code. This type of program is

usually more useful than a single element code in structural

analysis. The first element added was the beam element.

The beam element can be found in most structural analysis

text. (1),(2) The element allows three translation and three

rotation degrees of freedom at each node. The beam element

was programmed and added to the STAP code. This element

required an additional 6 subroutines for its use. The

addition of this element required 8 K-bytes of additional

core memory. This translated into a decrease in problem

size of 56 degrees of freedom. It is obvious from this fact

that the microcomputer is not suitable for any kind of

general purpose program under a sequential programming

15



format. The addition of only two or three more elements

would require the entire core memory of the microcomputer.

The only way a general purpose format could be used

would be to build a seperate program for each element. This

would prevent the use of more that one element in a given

problem, but would allow the use of more elements. This

would utilize the disk storage available to microcomputer.

The programs would be duplicates of each other, except for

the element library. The user would then only have to use

the appropriate program, instead of desiginating a specific

element in a general purpose program.

There are other methods of increasing the ability of

the microcomputer and make them more suitable to a

sequentially formatted program. These methods require

hardware and software purchases. The following three items

have the greatest potential:

1. New operating software system called CROMEX

2. Math chip

3. Hard disk pack

The most promising of these is the CROMEX operating

system. The present operating system requires 12 K-byte of

core memory. This is almost 20% of the total capicity of

the computer. For the STAP code, with a bandwidth of 6,

this represents 84 degrees of freedom. The CROMEX operating

system requires only 1 K-byte of core memory. This is

accomplished by adding memory boards to the computer, and

placing the remainder of the operating system on the new

boards. The 1 K-byte is a communication link between the

16



main core memory and the additional memory boards. The

total cost for this addition is approximately $2000. The

CROIEX software purchase price is $500, while the additional

memory boards cost $1500. This is only a 13% increase in

the total computer package, based on a purchase price of

$15,000. This is quite cost effective considering the 40%

gain in computational ability.

The second hardware change is a math chip. This

changes the floating point computations from a software

function, to a hardware function. The only advantage of the

chip is that computational time is lowered by a factor of 5-

10. There is no improvement in the accuracy of the floating

point computations. Although this is a significant time

improvement, the total through put times for problems under

consideration are not dominated by the computational time.

The main driver is the input/output times. Decreasing

solution time from 5 minutes to 3.5 minutes would not be

significant change. In order for a math chip to be useful,

the solution times would have to be dominated by the

numerical computations.

The final hardware change is changing from a floppy

disk storage to a hard disk . The hard disk increases

storage capacity from 4.8 M-byte to approximately 20 Ul-byte.

In addition, the input/output access time is reduced by a

factor of 2-3. This would be a significant improvement, but

the cost is somewhat prohibitive. The hard disk package for

the Cromeico computer is $9,000. Decreasing solution time

from 7.5 minutes to even 2 minutes would not make this very

17



cost effective. Purchase of a second computer might make

better sense.

These hardware and software changes simply improve the

capability of the microcomputer. Just the basic machine,

however, did demonstrate significant ability in finite

element solutions. The biggest disadvantage was the method

of programming. Sequential programming requires to much

core memory to completely utilize the microcomputer.

18



III. Overlays

Background

It is apparent from the previous chapter that minimum

core requirements are a necessity for finite element

programs utilized on microcomputers. Even the simple, single

element finite element codes suitable for use on a

microcomputer require extensive coding and data storage

space. As a result, the technique of overlaying or

segmentation is used. (6)

Program segmentation has been quite successful in

reducing the amount of core memory required for various

programs. The SAP program family, developed by K.J. Bathe,

E.L. Wilson, and F.E. Peterson at the University of Calif-

ornia is one example of successful overlay usage. (4)

Programs using overlays have been implemented on mini-

computer systems. The core memory restrictions that

hindered the mini-computer usage are much like the core

memory limitations that occur on microcomputers. The basic

difference lies in the size of the memory and the size of

the program involved.

Concept

Program overlaying is accomplished using an operating

system with overlay capabilities. Idealy, only that portion

of the program residing in core is the part being executed.

This technique, when applied properly, greatly reduces the

19



amount of core memory needed for a particular program.

This decrease in core requirements is the main attraction of

the overlay technique. With a decrease in the core space

required by the program, there is a corresponding increase

in the core space that can be dedicated to data storage.

This increase in the data storage allows for the solution of

much larger problems.

The idea behind overlays is quite simple. Recall Fig.

2.2, in which the memory map for a sequential program was

pictured. The entire program resides in core memory at the

same time. For an average length program, 20-25 K-bytes of

core memory may be required for the program. In Fig. 3.1

the overlay memory map is shown. The program is segmented

into seperate blocks of subroutines. This division might

MEMORY ALLOCATED TO OPERATING SYSTEM 12K

USER MEMORY

INPUT STIFFNESS SOLUTION OUTPUT

Memory allocated for the MAIN portion of a program

Figure 3.1
Overlay Memory Maps
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result in only 10 K-bytes of program living in core memory

at any given time. The seperate blocks of subroutines are

the contents of an overlay. Only one of the blocks would be

in core at any given time. The other three blocks would be

stored on disk storage until they were needed for program

execution. These are general numbers, with the specifics of

the STAP code presented later in this chapter.

Although the advantage of using overlay techniques is a

sizable one, there are drawbacks to using this method. The

concept of segmentation, if improperly applied, can produce

a poorly funtioning program. A poorly designed program will

have excessive disk interchanges(I/O) as varying sections of

the program are executed. Consideration must be given to

both the progrm structure and the operating system software

characteristics. As a result, it is usually much more

difficult to build an efficient program using overlays.

Since both the data and program are primarily disk

residents brought into core core as needed, a great deal of

bookkeeping must be accomplished. This bookkeeping

involves not only the data base, but the various portions of

the code itself. There is also the problem that in many

cases computer software is not designed to accept overlays.

This forces the programmer to develop the overlay software

compatible with the system in question. The computer

skills necessary for building overlay software are much

different than those used building programs.

This software difficulty is particularly true in the

microcomputer field. Microcomputers are marketed with an

21
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emphasis towards simplicity. The sales pitch is that

anybody, with only basic computer skills, can own and

operate a computer. As a result, the software for the more

complex computer problemns has been slow in development. It

has only been in the last 6 months that the software for

overlay generation has been available for the Cromemco

system.

Another significant disadvantage is that most

programming is still done using a sequential format. It is

only in the larger,more complex programs, that overlaying is

used. Once again this presents real problems when using

finite element codes on a microcomputer. The programs that

are small enough to be adapted for microcomputer usage are

not likely to be built using overlays. None of the

educational sized codes that were examined for the

sequential programming problem were built using overlays.

In order to utilize the overlay technique, the microcomputer

user is forced to build his own overlay code software, as

opposed to using existing overlay generation capabilities.

Implementation

To illustrate this process, the STAP code was reformed

into an overlay format. Traditionally, overlaying has

always been considered more of an art than a science.(5)

There is no single way to build a program with overlays and

to implement this program. The best way to compare a

segmented code to a sequential code is to compare the same

codes in each format. Using the same program allows a
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direct comparison in capabilites between the two forms of

programming.

The procedure for breaking a code into an over-lay

format is very straightforward. The first step is to

determine the dynamic calling sequence of the program. This

determines which subroutines are required for execution of

a specific portion of the program. The next step is to look

for obvious divisions of these subroutines into functions.

These functional groupings are then sized into program

segments of approximately equal size. These are the

overlays that will form the program. A flow chart of

STAP was built showing the subroutine calls. (Fig. 3.2)

This flow chart indicated the divisions of the subroutines.

The amount of core needed by each subroutine was

determined during the compilation of the program as a whole,

or during individual subroutine compilations.

MAIN

i I I i I I I
ERROR INPUT LOADS ELCAL ASSEM ADDBAN COLSOL STRESSI I I I I

ELEMNT ELEMNT ERROR LOADV ELiINT

TRUSS TRUSS WRITE TRUSS

COLHT

ERRR

Figure 3.2
STAP Flow Chart

Once this division was accomplished, it was necessary to

determine the length of the overlay. Breaking this program
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into five segments produced the smallest overlay possible.

The overlay size in this case was 8100 bytes.

The ELEMNT,TRUSS combination was used in each of the

problem stages. In the second stage, formation of stiffness

matrices, the ADDBAN subroutine was added to create the

segment which set the size of the overlay. The actual

overlay setup is shown in Fig. 3.3.

In this example, a previously developed, sequentially

formatted program was changed to an overlay format. This

meant that the debugging associated with construction of a

new program was avoided. However, if a new program is being

developed from scratch using an overlay format, previous

studies indicate that the initial program debugging should

occur in the sequential format, if possible.(6) This makes

the process of producing an operable code much simpler.

When the program is planned, the subroutines and

programmming logic are designed with the overlays in mind.

After the debugging is completed, and the program is

operational, then break the program into overlays.

Certain techniques utilized for efficient sequential

programming are not the most efficient for overlay

programming. For example, in the STAP program, all code

pertinant to the truss element was written into the sub-

routine TRUSS. The three functions of the TRUSS subroutine

are nodal information, stiffness matrix generation, and the

stress recovery functions. Each function required the same

arrays for execution. By combining these functions into a

single subroutine, the arrays were allocated only once.
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ADDRESS
CLEAR

ELCAL ASSEM
ELEMNT ELEMNT STRESS

INPUT TRUSS TRUSS COLSOL ELEMNT
LOADS ERROR ERROR LOADV TRUSS
ERROR COLHT ADDBAN WRITE ERROR

MAIN PROGRAM

Figure 3.3
Overlay Breakdown

This saved a significant amount of core memory required for

the program. For an overlay format, however, this created

much larger subroutines than were necessary.

Since TRUSS had three distinct functions, it was a long

and complex subroutine. As a result, in order to accomodate

the subroutine, the overlay was quite large. TRUSS was the

largest subroutine in the program. By breaking TRUSS into 3

seperate pieces, the size of the overlay was dramatically

reduced. The memory map (Fig. 3.1) would be altered only

slightly. Instead of the TRUSS being listed three times,

there would be a TRUSSI, TRUSSII, and a TRUSSIII. Because,

the functions of TRUSS were totally independent, there would

be no degredation of program response. By making these

smaller subroutines, the overlay size was reduced to

approximately 6700 bytes. This is a reduction in overlay

size by 15%, and represents approximately 2.2% of the total

core memory of the computer. Assuming bandwidths of 5-20,

this represents an increase of 10 degrees of freedom to the
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size of problem that can be solved. Problems with larger

bandwidths will have a decrease in the number of degrees of

freedom possible. Using the simple truss program for

comparison, the largest problem which can be handled using

an overlay format is in the range of 300 degrees of freedom.

This is entirely the result of the increase in user memory

made available by the overlays.

When the same procedure was followed for the more

complex beam element, the savings were even larger. The

program, containing the beam element and the truss element,

fitted into an overlay format, required an overlay size of

12000 bytes. Splitting the beam element into seperate

subroutines, using the same technique as in the truss

element, reduced the overlay to 9600 bytes. This represents

an increase of 17 degrees of freedom when compared to a

program utilizing a beam element combining the three

functions.

The penalty for the increased problem solving

capability of overlays is an increased total solution time.

In the sequential format, for the problem sizes under

consideration, doubling of the problem size produced

approximately a doubling of solution time. Using overlays

to double the problem size that can be handled changes this

ratio. Because of the increased disc I/O, the solution time

is expected to increase by a factor of 3-4. The total

solution time will be in the range of 15-20 minutes. This,

however, is still an acceptable figure for total solution

time.
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User available memory can also be increased by using

disk storage instead of memory storage at various stages in

a program. To illistrate this, the TRUSS subroutine was

rewritten. The TRUSS subroutine generates an element

stiffness matrix and stores this matrix in memory in blank

common. This requires a relatively small amount of storage.

Instead of storing this information in blank common, the

element stiffness matrix is stored on a sequential disk

file. Once all the element stiffness matrices are formed,

they are read from the disk file in the ADDBAN subroutine.

For this program, using the truss element, the memory space

saved is insignificant. At most, it might add 1 or 2 degrees

of freedom.

This program change, however, demonstrates the problems

which arise when I/O operations are not considered. Because

of the increased I/O operations, the solution should be

longer than the original overlayed program, but the problem

solving capability would not be significantly enhanced.

This situation is noted to point out the fact that not all

disk storage is acceptable. Increased problem solving

capability must he weighed against total solution time. For

this element, the space savings do not justify the time

increase. As the size and capabilities of the microcomputer

are expanded, however, the core memory increase might offset

the penalty of increased solution time.

Evaluation

In order to properly evaluate the overlay capability of
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the microcomputer, the overlay formatted STAP had to be

executed by the microcomputer. Because the overlay software

for the microcomputer was not installed on this system, an

attempt was made to construct an overlay generator. A basic

form of the software was implemented on the system, but it

was unable to handle the STAP overlays. Since skills

involved in construction of an overlay generator lie in the

area of computer science and not engineering, further

attempts were not made to improve the overlay generator.

When the software becomes available, the STAP program in

overlay format can be utilized.

In the sequential programming chapter, the observation

was made that a general purpose program would not be

feasible, except by using seperate programs. With the use

of overlays, however, this is not exactly true. It would be

possible to have several elements in the finite element

code, with each element living in its seperate overlay. In

order to accomplish this, the programmer would have to

insure that the common areas of the program are not being

moved during the creation of the overlays. They would have

to be located at specific points in core memory. This is

not a serious difficulty.

The only difficulty with the general purpose structure

is in the varying overlay sizes. Referring to the beam and

truss elements in STAP, the overlay size is significantly

changed. In order to use this technique to its maximum

capability, the user/programmer would have to alter the

overlay size, based on which element was being utilized. If
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multiple elements were wanted for a single problem, the

overlay size would be based on the largest overlay required

for a particular element. This technique would create some

unused memory space, but the convenience of the program

might out-weigh the small loss in problem size. Only one

program would have to be kept on hand, not the several that

sequential programming required. In this way, the real world

applications that require multiple element modeling could be

attempted on the microcomputer.Since mixed element soltuions

are usually necessary for good modeling, this capability is

highly desired.

In the chapter on sequential programming, several

modifications to the Cromemco microcomputer were examined.

When these same improvements applied in conjunction with

overlays, their potential is even more impressive.

The combination of the CROMEX software package with an

overlay format holds a great deal of promise. Using the

STAP code, with only the simple truss element as an example,

the total memory dedicated to program and system functions

is only 9.1 K-bytes. This leaves a total of 54.9 K-bytes of

core memory available for data storage. This is a increase

of 89% in the size of problem that the microcomputer can

handle, compared to the sequentially programmed STAP. With

this arrangement, the total number of degrees of freedom

that could be handled is in the range of 400. This is a

significant capability for the use of finite element

techniques in problem solving.

With the addition of the CROMEX, the problem size could
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increase enough to make a math chip a useful purchase. As

problem size increases, the percentage of total solution

time attributed to equation solving increases. Since a math

chip only decreases the amount of time in the computational

processes, the longer this time becomes, the more advantages

a math chip presents. The exact determination can only be

made for a specific computer system. For the present,

there is not enough information to make a decision on the

purchase of a math chip for the Cromemco microcomputer

system.

The appeal of the hard disk package is not really

affected by the use of overlays. The only real advantage of

the hard disk still lies in the input/output access times.

Unless there is a tremendous amount of I/O activity, there

is no real need for a hard disk for a microcomputer. Its

advantages do not outweigh its cost. As mentioned earlier,

the software for the Cromemco system has been updated to

include an overlay linker. Considering the difficulties of

constructing overlay software, it is recommended that the

software package be purchased. Even though the overlay STAP

program was a very simple code, the construction of an over-

lay generator is beyond the capabilities of most engineers.

It is a computer science project, requiring extensive

computer science skills.

30



IV. MODULARIZATION

Background

Modularization can be thought of as an extension of

overlays. A modularized program is a series of programs

operating sequentially. Each seperate program produces

output which is read into a common data base located in

external file storage. Each succeeding program obtains the

information required for execution from the data base, and

continues with its portion of the solution process. This

technique is another method used in increasing the amount of

memory available to the user by decreasing the memory

dedicated to program storage. For purposes of clarity, the

original program will be called the program, while each of

the smaller programs will be referred to as subprograms.

Modularizaton has been used successfully at the main

frame and minicomputer level. Two of the most famous of

these codes are GIFTS and SPAR. SPAR was created for NASA

by Dr. W.D. Whetson (5), while GIFTS was created at the

University of Arizona by Dr. H.A. Kamel.(6) Both of these

codes are general purpose finite element programs of

tremendous size.

Concept

A modulized program has significant advantages over

other programming formats. The first was already mentioned,

a smaller core memory requirement for the program. Because

the entire "main" portion of the program is not always in
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core, the core size dedicated to the program should be

slightly less than overlays. Also, depending on the exact

nature of the program the original input can be relatively

small. A automatic node and element generator can be the

first subprogram. Its output would be the nodal geometry and

form the base of a unified data file.

The unified data base allows the program to be halted

at any stage, and the results of that subprogram checked for

accuracy. For example, after the node and element

generation subprogram is completed, a plot could be executed

to check the input. If the structure is visibly acceptable,

then the next subprogram is called and the solution is

continued. This procedure is possible at any stage in the

program. Figure 4.1 shows a schematic of how a modularized

code might look.

In addition to requiring slightly less core memory than

overlays, modules are much simpler to construct. Each of the

USERI
OPERATING

SY ST EM

GEOLMETRY ELEMENTS STATIC SOLUTION

UNIFIED DATA BASE

Figure 4.1
Finite Element Modular Architecture
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subprograms is a seperate entity and is normally written in

a sequential format. There is no need for sophisticated

software to implement the program. Seperate overlay

generators are not necessary. Normal programming skills are

sufficient to use this programming format. The only real

difference in this format is the creation of the data base

and the bookkeeping required to insert and retrieve data.

There are disadvantages to modularized programs,

however. Since there is no link between the subprograms, all

data must be a resident on disk or tape files. This

requires a large amount of I/O transfer during the execution

of the program. As a result, the total solution time will

be increased. The usefulness of modularized finite element

programs will be determined by how much the through put time

increases in relation to the increased problem solving

capability.

Implementation

In order to illustrate the concept of modular

programming, the STAP program was divided into a modular

format. For ease of construction, the modules or sub-

programs, were constructed with the same functional grouping

as the overlay format. Because the subprograms were already

identified, the breaking of the program into module form was

not difficult. Figure 4.2 is a schematic of the modularized

STAP.

There were no unusual difficulties in implementation.

Since each of the sub-programs was a sequential format the
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normal computer software was sufficient. The only difference

was in running a series of programs as opposed to a single

program.

Evaluation

When the modularized format of the Stap code was used in

problem solving, its performance was less than expected.

This format produced an increase in solution capability by

only 23% as compared to a sequential format. This increase

OPERATING SYSTEM

INPUT GEOMETRY STIFFNESS SOLUTION
FOUTPUT

DATA BASE
(DISK FILES)

Fig 4.2
Modualrized STAP Program

was less than the increase expected of the overlay format.

The maximum problem size that the modularized STAP program

could solve was 270 degrees of freedom with a bandwidth of

15. The total solution time for this problem was 57

minutes. Table 4.1 give a summary of the capabilities of

the STAP program in modular format.

Although this represents a considerable problem solving

capability, the degradation in total solution time is a
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significant problem. For a problem on the order of 100

degrees of freedom, easily solvable with a sequential

format, throughput time was on the order of 45 minutes.

This does not compare favorably with the sequential format.

This time penalty was consistent throughout the entire range

of problem capability.

This increase in execution time is entirely a result of

the tremendous I/O of the modularized format. In the STAP

Node points DOF Total Solution
Time (Min)

8 10 3.9
30 54 16.4
63 112 36.8

102 180 44.3
141 270 57.2

Table 4.1
Timing Data-Modularized STAP

example, there is a data write and a data read to disk in

each program segment. In each case the majority of the data

base was altered by the subprogram execution. This fact,

coupled with the fact that the most inefficient part of the

microcomputer using disk storage is the I/O transfer,lead to

the large solution times noted. These solutions times were

approximately 10 times greater than the solution times for a

comparable problem solved using a sequentially formatted

program.

The Modularized STAP program was also very dependent on
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the number of elements in the structure, as well the degrees

of freedom in the problem. The figures in Table 4.1 were

generated with the structure pictured in Figure 2.1 being

used as a template. Multiple horizontal rows were created

to increase problem bandwidth to 15. This type structure

has a large number of elements in relation to the number of

node points.

A second structure was constructed, leaving out

alternating cross pieces and run on the program.(Fig 4.3)

This run was made with 270 degrees of freedom in the

problem, but the number of elements was reduced from 425 to

333. This reduction improved the solution time to only 52.4

minutes. The amount of data that had to be transferred was

reduced by the reduction in elements, resulting in the

improved performance of the program. In this example, only

the truss program was used for the data generation. Adding

the more complex beam to the process would not change the

relative performance of the program. In addition, the truss

element was used in the split form described earlier.

Figure 4.3

Simplified Truss Structure
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The module concept has great potential as a general

purpose program on microcomputers. Since each subprogram is

a seperate function, the problem of core availability does

not exist. Likewise, the problem of storage in relation to

uneven overlays is absent. Since the data base lives on

disk file, there is no need to keep track of loading points.

The data can be called from disk during runtime operation of

the program. The only consideration is to keep track of the

data on the disk files, and the order it was stored.

The modifications to the Cromemco system also look

promising in conjunction with modulized programs. The

decrease in memory dedicated to operating system will

improve the problem solving capability of a modularized

formatted program much in the same way that the overlay

program was aided and the improvements should be comparable.

In order to fully utilize this gain in problem solving

capability, some method of decreasing the time for I/O

transfer must be developed.

In the modular concept, as in the other program-ming

methods, the math chip would probably not produce

significant performance increases. The computation time

does not really change in the modular format. The total

computational time does not justify its use.

The hard disk, used in conjunction with a modular

program could be the answer to the disk I/O problems. The

main advantage of the hard disk was in the decreased I/O

access time between computer and hard disk. A decrease in

this segment of execution time by a factor of 2-3, would
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bring the solution times for a molular program back in line

with the other forms of programming. Once again, the cost

of the hard disk is the determining factor. Significant

improvements in disk I/O access times may offset the cost of

the disk pack. Again, consideration to a second computer

must be given due to the tremendous cost of a hard disk

pack.
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V. Basic Skills

One of the objectives of this study was to determine

the necessary user skill level needed to effectively work

on a microcomputer system. The question was whether an

engineer with basic computer programming skills could use a

a micro-computer in conjuncton with finite elements, or

wheter it takes a computer programmer with some engineering

skills.

The author's experience in computers at the beginnning

of this project was almost non-existant. The only experience

in computers and programming was a single course in FORTRAN

programming. It consisted of learning how to read and

understand the FORTRAN language, and the basics of

structured programming. The experience in microcomputers

was that of seeing them demonstrated in laboratories or in

word processing systems.

With this as a starting point, finite element codes

were implemented on a microcomputer. The lack of experience

did create many of the problems noted in other chapters, but

the published materials on FORTRAN, programming, and micro-

computers were usually sufficient in solving the problems.

It is necessary to point out that the required course

work at the Master's level in engineering is not sufficient

to set up and operate a microcomputer. It takes help from

published materials and people with experience in the field

of microcomputers, to accomplish this task. The published
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material is readily available and with the increased

poplarity of these small computers, there is usually one

person in a section or laboratory with this type of

experience.

An individual's lack of experience should not be a

determining factor in microcomputer usage. This experience

factor might determine the length of time required to adapt

or create the first programs, but it can be overcome. In

only a very short period of time, an engineer can be

operating a microcomputer system with positive results.

There are several terms and tasks which must be

understood when using a microcomputer as opposed to a

central site machine. Computer work done on the central

site usually consists of data file creation, source editing,

and compiling the edited program. These tasks are taught in

basic computer programming and are basic to sequential

formatted programming. The engineer can operate finite

element programs with these skills.

Use of the microcomputer will require the engineer to

be more knowledgable of programming techniques. For example,

in Chapter 2, an attempt was made to alter the method of

storage in memory. This involves manipulating the linker.

This would rarely, if ever, be done on a central site

computer. The procedure was not difficult, and the Cromemco

literature gave all the details necessary.

In Chapter 3, the concept of overlays was dealt with.

With a central site computer, this type of program would be

automatically handled, possibly without the user realizing
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that overlays were in use. This would not be possible on

a microcomputer. The user will know if the program he builds

or adapts to a microcomputer system uses overlays. He will

have to come up with an overlay generator as well. This

software could be purchased of constructed, but it is the

user's responsibility. This same concept extends into the

modular concept. It takes a higher level of skill than

central site operation. By using the microcomputer, these

skills are developed. The basic sequentially formatted

program can be used with skill level that most engineers

would have. To fully utilize the the microcomputer,

different skills will have to be developed.
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VI. Implementation Problems

The problems of implementing a finite element program

on a microcomputer are two fold. The first deals with the

experience level of the user in computer programming. This

refers to both the general concepts of programming and the

specifics of the language the program is written in. The

second is related to hardware aspects of a microcomputer.

The typical user of a microcomputer is usually the prime

technician for the system. There is no external expert

support except that which is arranged by the user. These

two considerations determine the ease in which a computer

program is implemented on a microcomputer system.

There are certain basic steps which can be taken that

will enhance the user's ability to apply a program to a

microcomputer. The first is to insure that the program is

tailored to fit the core memory of the machine. For example,

the original STAP code was built with a blank common size of

100,000. Obviously, this would not fit on a 64 K-byte micro-

computer. Related to this is the size of the arrays which

are established in the program. These changes are easily

accomplished, requiring only the reading of the program for

proper sizing.

In addition to the obvious sizing problems, the user

must also know how the computer conducts its storage. [lost

main frame computers use the same number of bytes for both

integer and real value storage. However, this is not always
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true for micro-computers. In the Cromemco system, integer

values use 2 bytes for storage, while reals require 4 bytes.

This change can alter the manner in which a program must

recall data from storage. The STAP program used a real array

for blank common to store both real values and integer

values. This poses no problem when they have the same byte

length. However, when the Cromemco system used the same

real array to store integer values, they were stored as two

bytes, while the reals were stored as four bytes. The Stap

code used algorithims to determine the starting and ending

points for the array storage based on 4 bytes for both

integer and real. When these values were calculated, they

pointed to the wrong location for a mixed byte pattern.

Data was being overwritten and misplaced by the computer.

This problem was easily corrected by using integer

arrays and modifying the pointer algorithims. By knowing

this fact before hand, a great deal of time in debugging can

be eliminated during implementation of a program.

When dealing with a microcomputer there are certain

limitations which must be recognized. These are parts of the

operating system of the computer. Because the overall system

is small, the software package must also be limited. Run-

time debugging is not generally available. As the errors in

the FORTRAN code are found and corrected, the only way to

update the code was to compile the entire program. Even for

the relatively short STAP program, the compilation time was

a limiting factor in the debugging process. Compilation

time was approximately 3 minutes. This can greatly increase
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the amount of time to debug a program. Obviously, the more

complex the program, the longer the debugging process.

Access to common areas is another feature lacking in

the Cromemco microcomputer. In order to access common,

specific debugging routines must be developed. Figure 6.1

at the end of this chatper list subroutines which can be

used to accss arrays carrying real and integer values. The

PRINTN subroutine was used to determing the pointers for

array storage, while the PRINIT and WRITIT subroutines

displayed the contents of the blank common. These routines

are based on a 2 byte integer, 4 byte real storage scheme.

The basic idea is that when tising a microcomputer, the

user can not just blindly put a code on the system. The

process will be more complex than for the central site, and

there will be no technicians to solve problems. The user

must be more familiar with the codes involved. The increased

time for implementing and debugging must be xpected and

accepted.
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SUBROUTINE PRINTN

COMMON/D 114/ N(15)
CIMMON/TAPES/IELMINT, ILOAD,IIN, lOUT
WRITE (IOUT,101)

101 FORMAT (////35H THESE ARE THE 11(I) PARAMETERS II
DO 100 I=1,15
WRITE (IOUT,200) I,N(I)

200 FORMAT (2110)
100 CONTINUE

RETURN
END

SUBROUTINE PRINIT (LEN)

DIMENSION A(l)
COMMOII/DIM1/N (15)
COMMON/TLAPES/IELINT, ILOAD, IIN, lOUT
COMMON IA(1)
EQUIVALENCE (IA(1),A(1))
II=LEN-1
DO 100 I=1,LEN
JJ=N(I+1) -1
DO 100 J=JJ,JK
CALL WRITIT (J,IA(J))

100 CONTINUE
RETURN
END

SUBROUTINE WRITIT (J, IA)
C .... THIS SUBROUTINE PRINTS A REAL AND INTEGER INTERPRETATIOU OF
C THE MEMORY STARTING AT .IA ......

DIMENSION IA(2) , IT(2)
COMMON/TAPES/IELINT, ILOAD, IIN, lOUT
EQUIVALENCE (A, IT (1))
IT(1) =IA(1)
IT(2) =IA(2)
WRITE (IOUT,100) J,A,IA(l)

100 FORMAT (1H,Il0,2X,E13.6,2X,I10)
RETURN

* END

Figure 6.1
General Debugging Subroutines
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VII. Conclusions

If the programs are properly organized, the

microcomputer is capable of handling problems of significant

size with finite element techniques. Programs written in the

simplest programming format, sequential, handle problems

with 200 degrees of freedom with total solution times of

less than five minutes. Although this could not solve the

structural analysis of an entire aircract or large

structure, 200 degrees of freedom can solve problems of

reasonable magnitude.

Using sequential formatting and the resulting 200

degrees of freedom, the only problem that is reasonable

would be a two dimensional static analysis. The use of the

more complex plate elements and quadrilateral elements would

probably not be possible. These elements would decrease the

problem size capability due to their complexity.

With the adaption of overlays and modualar programming,

and the additional purchases of hardware and

software, problem sizes in the region of 400 degrees of

freedom are solvable. Although solutions times have

increased somewhat, the times are not excessive. Four

hundred degrees of freedom can handle many significant

problems in static structural analysis. At this level the

more complex elements would be possible.

In both the above situations, however, the bandwidth of

potential problems must be considered carefully. Poor

46



problem setup could increase bandwidths to such a degree

that the problem solving capability would be greatly

decreased. Not only is the bandwidth a computer problem, it

is also a structural problem. The small computer can handle

structures which are. long in one axis and narrow in a second

axis much more efficiently that structures which are more

square in nature.

In addition to the abilities of the microcomputer to

handle finite element codes, there is a second major benefit

resulting from these procedures. Finite element program

development would be enhanced by microcomputer usage. The

trend in modern programming is in structured programming.

This type of programming allows for the construction of

blocks of the same program to be developed independently.

The only requirement is that the programmer knows what is

coming into, and what is required to leave his segment of

the program. This type of program development is perfect

for the microcomputer.

Even if the total program is too complex to fit on a

microcomputer, the various segments may not be. These

segments could be constructed on the smaller computer,

leaving the central site computers free for combining the

segments into an integrated program. This usage would serve

two important functions.

The first is that congestion at the central site would

be reduced. As most engineers know, one of the biggest

problems with computer usage is a lack of available computer

time. If the number of jobs on the central site main frame
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computer was reduced, then computer resources would become

more plentiful. The cost of using these microcomputer

systems would be limited to how much time is necessary to

set up the software to handle FORTRAN programs. Since the

microcomputer systems in use today are typically under

utilized in their secretarial role, there would be no

additional hardware costs. It is even possible to be in a

situation where the purchase of a microcomputer system would

be justified soley on the basis of improving central site

operation. This type of assessment could only be made for

particular operations.

Next, is the fact that the program development could be

more efficient. When the programmer is working under an

obvious size constraint, he might be inclined to look for a

more efficient manner in program construction. The problem

of core memory restrictions would be more obvious on micro-

computers than on main frame computers. This may not always

occur, but it is a distinct possibility.

The final area that the microcomputer can be utilized

in is in educational format. This could either be formal in

nature, or on the job training. Finite element techniques

are necessary in many fields. By using microcomputer

systems as educational tools, the same advantages of reduced

central site congestion occur.
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VIII. Recommendations

Further work needs to be accomplished in this area.

The first step should be to acquire the CROMEX operating

system and the software for overlay generation. With these

additions the computer has the capability for significant

problem solving.

With or without these additions other problems need to

be addressed. The first would be in exploring the different

types of solvers in use today. A more efficient solution

technique might add to the capability of the computer. These

solvers could be both in core or out of core solvers. A

second aspect that could be examined is the use of an

iterative technique in the solution process. This approach

usually requires fewer degrees of freedom than a direct

approach. This approach would avoid the problem of disk I/O

transfer by working with smaller problem sizes in core.

At the present time, the best course to pursue is in

the overlay format. This technique shows great promise in

total problem size, without the timing disadvantages that

the modular format has.
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